Chemistry 233 Chapter 6 Problem Set

Nucleophiles and Electrophiles

1) Identify all of the nucleophilic centers in each of the following compounds:

- (b) Li (d) NaOH
- 2) Identify all of the electrophilic centers in each of the following compounds:

Arrow Pushing and Reaction Mechanisms

3) Identify which arrow pushing pattern is utilized in the following reactions:

$$(a) \qquad \stackrel{\text{Cl}}{\longrightarrow} \qquad \stackrel{\oplus}{\longrightarrow} \qquad + \qquad \stackrel{\ominus}{\subset}$$

(c)
$$+$$
 0 $+$ $+$ 0 $+$

$$(d) \qquad \stackrel{\text{H}}{\longleftarrow} \qquad \longrightarrow \qquad \stackrel{\text{(d)}}{\longleftarrow}$$

(g)
$$Ph OSO_2CH_3 \longrightarrow Ph$$
 + OSO_2CH_3

4) Identify the electron flow pattern in each step of the complete reaction mechanisms shown below.

5) Draw curved arrows to accomplish the following transformations. *Hint: it may help to draw in lone pairs.*

6) Predict if the following carbocations will rearrange. If so, draw the rearrangement product.

Reaction Coordinate Diagrams

7) Consider the two energy diagrams shown below:

- (a) Which of the two reactions will occur at a faster rate?
- (b) Compare the value of ΔG for both reactions.
- (c) At equilibrium, which reaction, if either, will favor product?
- (d) At equilibrium, which reaction, if either, will contain a higher concentration of product?
- 8) Consider the following reaction that is thermodynamically favored. Draw a reaction coordinate diagram that represents the reaction.

9) Draw a reaction coordinate diagram for a reaction that is exergonic (exothermic), has two intermediates, and the rate-determining step is the second step.